A-level Mathematics

MFP3- Further Pure 3<br>Mark scheme

6360
June 2018

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

| Key to mark scheme abbreviations |  |
| :---: | :---: |
| M | mark is for method |
| m or dM | mark is dependent on one or more M marks and is for method |
| A | mark is dependent on M or m marks and is for accuracy |
| B | mark is independent of $M$ or $m$ marks and is for method and accuracy |
| E | mark is for explanation |
| $\checkmark$ orft or F | follow through from previous incorrect result |
| CAO | correct answer only |
| CSO | correct solution only |
| AWFW | anything which falls within |
| AWRT | anything which rounds to |
| ACF | any correct form |
| AG | answer given |
| SC | special case |
| OE | or equivalent |
| A2,1 | 2 or 1 (or 0) accuracy marks |
| -x EE | deduct $x$ marks for each error |
| NMS | no method shown |
| PI | possibly implied |
| SCA | substantially correct approach |
| c | candidate |
| sf | significant figure(s) |
| dp | decimal place(s) |

## No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

| Q1 | Solution | Mark | Total | Comment |
| :---: | :---: | :---: | :---: | :---: |
| (a) <br> (b) | The interval of integration is infinite $\begin{aligned} & (\mathrm{I}=) \int \frac{x-1}{\mathrm{e}^{x}} \mathrm{~d} x=\int(x-1) \mathrm{e}^{-x} \mathrm{~d} x \\ & u=x-1, \quad \frac{\mathrm{~d} v}{\mathrm{~d} x}=\mathrm{e}^{-x} \\ & (\mathrm{I})=-(x-1) \mathrm{e}^{-x}-\int-\mathrm{e}^{-x}(\mathrm{~d} x) \\ & =-(x-1) \mathrm{e}^{-x}-\mathrm{e}^{-x}(+c) \\ & \left(=-x \mathrm{e}^{-x}\right) \end{aligned} \begin{array}{r} \int_{1}^{\infty} \frac{x-1}{\mathrm{e}^{x}} \mathrm{~d} x=\lim _{a \rightarrow \infty} \int_{1}^{a}(x-1) \mathrm{e}^{-x} \mathrm{~d} x \\ =\lim _{a \rightarrow \infty}\left\{-a \mathrm{e}^{-a}\right\}-\left(-\mathrm{e}^{-1}\right) \\ =0+\mathrm{e}^{-1}=\mathrm{e}^{-1} \end{array}$ | B1 <br> M1 <br> A1 <br> M1 <br> A1 | 4 | OE. Do NOT apply ISW <br> $\frac{\mathrm{d} u}{\mathrm{~d} x}=1, v= \pm \mathrm{e}^{-x}$ used in correct integration by parts formula. PI by next line ie correct integration $-(x-1) \mathrm{e}^{-x}-\mathrm{e}^{-x}$ OE <br> Evidence of limit $\infty$ having been replaced by $a(\mathrm{OE})$ at any stage and $\lim _{a \rightarrow \infty}$ seen or taken at any stage with no remaining lim relating to 1 . <br> Be convinced |
|  | Total |  | 5 |  |
| (b) | May see integral split, ie $=\int x \mathrm{e}^{-x} \mathrm{~d} x-\int \mathrm{e}^{-x} \mathrm{~d} x=-x \mathrm{e}^{-x}-\int-\mathrm{e}^{-x} \mathrm{~d} x-\int \mathrm{e}^{-x} \mathrm{~d} x=-x \mathrm{e}^{-x}$. For the first M1 mark, apply the main scheme, with $u=x$ following a correct split. |  |  |  |


| Q2 | Solution | Mark | Total | Comment |
| :---: | :---: | :---: | :---: | :---: |
|  | DO NOT ALLOW ANY MISREADS IN THIS QUESTION |  |  |  |
|  | $k_{1}=0.3 \times(2+1.5)=1.05 \quad\left(=\frac{21}{20}\right)$ | B1 |  | Correct exact value for $k_{1}$ seen or used |
|  | $\begin{aligned} k_{2} & =0.3\left[2.3+\frac{1}{2} \log _{2}(8+1.05)\right] \\ & =0.3\left[2.3+\frac{1}{2}(3.1779 \ldots)\right] \end{aligned}$ | M1 |  | $k_{2}=0.3\left[2+0.3+\frac{1}{2} \log _{2}\left(7+1+\mathrm{c}^{\prime} \mathrm{s} k_{1}\right)\right]$ <br> seen or used |
|  | $=1.166(687 \ldots)$ | A1 |  | 1.166, 1.166..., 1.167 PI by later correct evaluation(s) |
|  | $\begin{gathered} (y(2.3)=) \quad 1+\frac{1}{2}(1.05+1.166 \ldots) \\ (=2.108(3 \ldots)) \end{gathered}$ | dM1 |  | $1+\frac{1}{2}\left(\mathrm{c}^{\prime} \mathrm{s} k_{1} \text { value }+\mathrm{c}^{\prime} \mathrm{s} k_{2} \text { value }\right) \text { seen }$ <br> or used. If not seen, ft evaluation must be correct to at least 4sf. |
|  | $=2.108 \text { (to } 4 \mathrm{sf} \text { ) }$ | A1 | 5 | CAO Must be 2.108 |
|  | Total |  | 5 |  |
|  | Any change of base must be carried out correctly eg $\log _{2} N=\frac{\ln N}{\ln 2}$ or $\log _{2} N=\frac{\log _{10} N}{\log _{10} 2}$ |  |  |  |


| Q3 | Solution | Mark | Total | Comment |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { Aux eqn } m^{2}-6 m+10=0 \\ & (m-3)^{2}-9+10=0 \end{aligned}$ | M1 |  | Completing the square or using quadratic formula OE on correct aux. eqn. PI by correct value of ' $m$ ' seen/used. |
|  | $(m=3 \pm \mathrm{i})\left(y_{C F}=\right) \mathrm{e}^{3 x}(A \sin x+B \cos x)$ | A1 |  | Correct CF. |
|  | $\left(y_{\mathrm{PI}}=\right) a x^{2}+b x+c$ | M1 |  | Correct general form for particular integral If other term(s) included, candidate needs to show the corresponding coefficient is 0 . |
|  | $\begin{aligned} & \left(y_{P I}^{\prime}=\right) 2 a x+b ; \quad\left(y^{\prime \prime}{ }_{P I}=\right) 2 a \\ & 2 a-6(2 a x+b)+10\left(a x^{2}+b x+c\right) \\ & =34 x-20 x^{2} \end{aligned}$ | dM1 |  | Dep only on the $2^{\text {nd }} \mathrm{M} 1$ above. Substitution into LHS of DE. PI by at least two correct equations in next line. |
|  | $\begin{aligned} & 10 a=-20 ;-12 a+10 b=34 ; \\ & 2 a-6 b+10 c=0 \end{aligned}$ | A1 |  | Three equations at least two correct, seen or used |
|  | $a=-2, b=1, c=1 ;\left(y_{\mathrm{PI}}=\right)-2 x^{2}+x+1$ |  |  | $a=-2, b=1, c=1 \text { or }-2 x^{2}+x+1$ |
|  | $\left(y_{\mathrm{GS}}=\right) \mathrm{e}^{3 x}(A \sin x+B \cos x)-2 x^{2}+x+1$ | A1 | 7 | Correct expression for the general solution |
|  | Total |  | 7 |  |
|  |  |  |  |  |


| Q4 | Solution | Mark | Total | Comment |
| :---: | :---: | :---: | :---: | :---: |
|  | $\sqrt{9-k x^{4}}=3\left[1-\frac{k}{18} x^{4}+\ldots \ldots . .\right]$ | B1 <br> M1 <br> A1 <br> A1F | 4 | Correct first two terms in the expansion of $\sqrt{9-k x^{4}}$ seen or used. <br> OR $\quad\left[\frac{3-\sqrt{9-k x^{4}}}{7 x^{6}+8 x^{4}}\right]=$ $=\frac{9-\left(9-k x^{4}\right)}{8 x^{4}\left(3+\sqrt{9-k x^{4}}\right)+7 x^{6}\left(3+\sqrt{9-k x^{4}}\right)}$ <br> seen or used. <br> Dividing numerator and denominator by $x^{4}$ to get constant term in each, leading to a finite limit. Must be at least a total of three 'terms' divided by $x^{4}$. <br> Correct expression in terms of $k$ for the value of the limit. OE seen or used. <br> OE Dep on no incorrect power of $x$ seen after division by $x^{4}$ above. <br> Only ft on the sign error leading to B0 $\sqrt{9-k x^{4}}=3\left[1+\frac{k}{18} x^{4}+\ldots\right]$ which would lead to $k=-\frac{3}{2} \mathrm{OE}$ |
|  | Total |  | 4 |  |
| Example | $\left[\frac{3-\sqrt{9-k x^{4}}}{7 x^{6}+8 x^{4}}\right]=\frac{\frac{3 k}{18} x^{4}+O\left(x^{8}\right)}{7 x^{6}+8 x^{4}}(\mathrm{~B} 1)=\frac{\frac{3 k}{18}+O\left(x^{2}\right)}{7 x^{2}+8}$ (error seen in power of $x$ )(M1)$\lim _{x \rightarrow 0} \ldots \ldots=\frac{3 k}{144}(\mathrm{~A} 1)=\frac{1}{32} \Rightarrow k=\frac{3}{2}(\mathrm{~A} 0)$ |  |  |  |




| Q7 | Solution | Mark | Total | Comment |
| :---: | :---: | :---: | :---: | :---: |
| (a) | $\begin{aligned} & \text { Aux eqn } m^{2}+4 m+4=0 \\ & (m+2)^{2}=0 \\ & \left(y_{C F}=\right)(A x+B) \mathrm{e}^{-2 x} \end{aligned}$ | M1 A1 |  | Factorising or using quadratic formula OE on correct aux eqn. PI by correct value of ' $m$ ' seen/used. |
|  | $\begin{aligned} & \text { Try }\left(y_{P I}=\right) a \sin 2 x+b \cos 2 x \\ & \left(y_{P I}^{\prime}=\right) 2 a \cos 2 x-2 b \sin 2 x ; \\ & \left(y^{\prime \prime}{ }_{P I}=\right)-4 a \sin 2 x-4 b \cos 2 x \end{aligned}$ | M1 |  | Correct form for $y_{P I}$ used. If other term(s) included, candidate needs to show the corresponding coefficient is 0 |
|  | $\begin{aligned} & -4 a \sin 2 x-4 b \cos 2 x \\ & +4(2 a \cos 2 x-2 b \sin 2 x)+ \\ & 4(a \sin 2 x+b \cos 2 x)=4 \sin 2 x+8 \cos 2 x \\ & -8 b=4 ; 8 a=8 \Rightarrow a=1, b=-\frac{1}{2} \end{aligned}$ | dM1 A1 |  | Correct substitution into DE, dep on previous M only. PI by correct $a$ and $b$ seen or used. <br> Finding correct coefficients for particular integral. PI by next line |
|  | $\left(y_{\mathrm{GS}}=\right)(A x+B) \mathrm{e}^{-2 x}+\sin 2 x-\frac{1}{2} \cos 2 x$ | A1 | 6 | Correct GS with two arbitrary constants. |
| (b) | When $x=0, y=\frac{1}{2}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$ $\mathrm{f}(0)=B-0.5=0.5 \Rightarrow B=1$ | M1 |  | $\mathrm{f}(0)=0.5$ OE used with c's GS as far as finding a value for one of the arbitrary constants. |
|  | $\mathrm{f}^{\prime}(0)=A-2 B+2=0 \Rightarrow A=0$ | M1 |  | $f^{\prime}(0)=0$ OE used with c's GS as far as finding a value for the remaining arbitrary constant. |
|  | $(y=\mathrm{f}(x)=) \mathrm{e}^{-2 x}+\sin 2 x-\frac{1}{2} \cos 2 x$ | A1 |  | $\mathrm{e}^{-2 x}+\sin 2 x-\frac{1}{2} \cos 2 x \text { OE }$ <br> PI by the next line |
|  | $\left(\mathrm{f}\left(\frac{\pi}{6}\right)=\right) \mathrm{e}^{-\frac{\pi}{3}}+\frac{\sqrt{3}}{2}-\frac{1}{4}$ | A1 | 4 | ACF but must be exact with no trig fns |
|  | Total |  | 10 |  |
| (b) | Altn for the two M1 marks : Relevant expansions of $\mathrm{e}^{-2 x}, \sin 2 x, \cos 2 x$ used and coefficients of $x^{0}$ or $x$ equated; relevant equations are $B-0.5=0.5, A-2 B+2=0$ and a value for the arbitrary constant must be found as in main scheme. |  |  |  |
| (b) | $\mathrm{f}^{\prime \prime}(0)=6$ used as far as finding a value for an arbitrary constant is an OE for M1; $[-4 A+4 B+2=6]$ |  |  |  |




