

A-level Mathematics

MFP3- Further Pure 3 Mark scheme

6360

June 2018

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright © 2018 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Key to mark scheme abbreviations

M m or dM	mark is for method mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q1	Solution	Mark	Total	Comment
(a)	The interval of integration is infinite	B1	1	OE. Do NOT apply ISW
(b)	(I=) $\int \frac{x-1}{e^x} dx = \int (x-1)e^{-x} dx$			
	$u = x - 1$, $\frac{\mathrm{d}v}{\mathrm{d}x} = \mathrm{e}^{-x}$			$\frac{du}{dt} = 1$, $v = \pm e^{-x}$ used in correct
	(I) = $-(x-1)e^{-x} - \int -e^{-x} (dx)$	M1		dx integration by parts formula.
				PI by next line le correct integration
	$= -(x-1)e^{-x} - e^{-x} (+c)$	A1		$-(x-1)e^{-x}-e^{-x}$ OE
	$\left(=-x\mathrm{e}^{-x}\right)$			
				Evidence of limit ∞ having been replaced
	$\int_{1}^{\infty} \frac{x-1}{e^{x}} dx = \lim_{a \to \infty} \int_{1}^{a} (x-1)e^{-x} dx$	M1		by <i>a</i> (OE) at any stage and $\lim_{a \to \infty}$ seen
				or taken at any stage with no remaining lim relating to 1.
	$= \lim_{a \to \infty} \left\{ -a e^{-a} \right\} - \left(-e^{-1} \right)$			
	$= 0 + e^{-1} = e^{-1}$	A1	4	Be convinced
	Total		5	
(b)	May see integral split, ie = $\int x e^{-x} dx - \int e^{-x} dx$	-x dx = -	$x e^{-x} - \int$	$-e^{-x} dx - \int e^{-x} dx = -x e^{-x}$. For the
	first M1 mark, apply the main scheme, with <i>u</i>	= x follo	owing a co	orrect split.
1				

Q2	Solution	Mark	Total	Comment
	DO NOT ALLOW ANY MISREADS	IN THI	<u>S QUES</u>	TION
	$k_1 = 0.3 \times (2+1.5) = 1.05 \ \left(=\frac{21}{20}\right)$	B1		Correct exact value for k_1 seen or used
	$k_{2} = 0.3 \left[2.3 + \frac{1}{2} \log_{2}(8 + 1.05) \right]$ $= 0.3 \left[2.3 + \frac{1}{2} (3.1779) \right]$	M1		$k_2 = 0.3 \left[2 + 0.3 + \frac{1}{2} \log_2(7 + 1 + c' s k_1) \right]$ seen or used
	= 1.166(687)	A1		1.166 , 1.166 , 1.167 PI by later correct evaluation(s)
	$(y(2.3)=) 1+\frac{1}{2}(1.05+1.166)$	dM1		$1 + \frac{1}{2}$ (c's k_1 value + c's k_2 value) seen or used. If not seen, ft evaluation must be
	(=2.108(3))			correct to at least 4sf.
	= 2.108 (to 4sf)	A1	5	CAO Must be 2.108
	Total		5	
	Any change of base must be carried out corr	ectly eg	$\log_2 N =$	$\frac{\ln N}{\ln 2}$ or $\log_2 N = \frac{\log_{10} N}{\log_{10} 2}$

Q3	Solution	Mark	Total	Comment
	Aux eqn $m^2 - 6m + 10 = 0$ $(m-3)^2 - 9 + 10 = 0$	M1		Completing the square or using quadratic formula OE on correct aux. eqn. PI by correct value of ' <i>m</i> ' seen/used.
	$(m = 3 \pm i) (y_{CF} =) e^{3x} (A \sin x + B \cos x)$	A1		Correct CF.
	$(y_{\rm PI} =) ax^2 + bx + c$	M1		Correct general form for particular integral If other term(s) included, candidate needs to show the corresponding coefficient is 0.
	$(y'_{PI} =) 2ax + b; (y''_{PI} =) 2a$ $2a - 6(2ax + b) + 10(ax^{2} + bx + c)$ $= 34x - 20x^{2}$	dM1		Dep only on the 2 nd M1 above. Substitution into LHS of DE. PI by at least two correct equations in next line.
	$10a = -20; -12a + 10b = 34; \\ 2a - 6b + 10c = 0$	A1		Three equations at least two correct, seen or used
	$a = -2, b = 1, c = 1; (y_{PI} =) -2x^2 + x + 1$	A1		$a = -2, b = 1, c = 1$ or $-2x^2 + x + 1$
	$(y_{GS} =) e^{3x} (A \sin x + B \cos x) - 2x^2 + x + 1$	A1	7	Correct expression for the general solution
	Total		7	

Q4	Solution	Mark	Total	Comment
	$\sqrt{9 - kx^4} = 3 \left[1 - \frac{k}{18} x^4 + \dots \right]$	B1		Correct first two terms in the expansion of $\sqrt{9-kx^4}$ seen or used. OR $\left[\frac{3-\sqrt{9-kx^4}}{7x^6+8x^4}\right] =$
	$\begin{bmatrix} & 3k \\ x^4 + O(x^8) \end{bmatrix}$			$= \frac{9 - (9 - kx^4)}{8x^4(3 + \sqrt{9 - kx^4}) + 7x^6(3 + \sqrt{9 - kx^4})}$ seen or used.
	$\left \frac{3 - \sqrt{9 - kx^4}}{7x^6 + 8x^4} \right = \frac{18}{7x^6 + 8x^4}$			
	$= \frac{\frac{3k}{18} + O(x^4)}{7x^2 + 8}$	M1		Dividing numerator and denominator by x^4 to get constant term in each, leading to a finite limit. Must be at least a total of three 'terms' divided by x^4 .
	$\lim_{x \to 0} \left[\frac{3 - \sqrt{9 - kx^4}}{7x^6 + 8x^4} \right] = \frac{3k}{144}$	A1		Correct expression in terms of k for the value of the limit. OE seen or used.
	$\frac{3k}{144} = \frac{1}{32} \Longrightarrow k = \frac{3}{2}$	A1F	4	OE Dep on no incorrect power of x seen after division by x^4 above. Only ft on the sign error leading to B0
				$\sqrt{9 - kx^4} = 3 \left[1 + \frac{\kappa}{18} x^4 + \dots \right] $ which would lead to $k = -\frac{3}{2} $ OE
	Total		4	
Examp	le $\left[\frac{3-\sqrt{9-kx^4}}{7x^6+8x^4}\right] = \frac{\frac{3k}{18}x^4+O(x^8)}{7x^6+8x^4}$ (B1) = $\lim_{x \to 0} \dots = \frac{3k}{144}$ (A1) $=\frac{1}{32} \Longrightarrow k = \frac{3}{2}$	$\frac{\frac{3k}{18} + O\left(x^2 + \frac{3k}{7x^2 + 3x^2}\right)}{7x^2 + 3x^2}$ (A0)	$\frac{x^2}{3}$ (error	br seen in power of x) (M1)

Q5	Solution	Mark	Total	Comment
(a)	$3r + 2r\sin\theta = 5 \implies 3r + 2y = 5$	M1		$r\sin\theta = y$ used at any stage.
	$9r^2 = (5-2y)^2$			
	$\Rightarrow 9(x^2 + y^2) = (5 - 2y)^2$	M1		$r = \sqrt{x^2 + y^2}$ used to form a Cartesian
				equation.
	$9x^2 + 5(y+2)^2 = (45)$	A1		$9x^2 + 5(y+2)^2 = \text{constant}$
				or $9x^2 + 5y^2 + 20y - 25 = 0$
				or $x = 0$, $5y^2 + 20y - 25 = 0$ OE
	(Tangents parallel to coordinate axes:) $x = \sqrt{5}, x = -\sqrt{5}, y = 1, y = -5$	A2,1,0	5	A2 all four correct; A1 any two correct.
(b)	$\frac{x^2}{5} + \frac{(y+2)^2}{9} = 1; a = \sqrt{5} ; \ b = 3$	M1		Finding semi-axes with at least one value correct; seen or used
	(Area =) $\pi(\sqrt{5})(3)$	A1		
	(Area =) $\frac{1}{2} \int_0^{2\pi} \left(\frac{5}{3+2\sin\theta}\right)^2 (d\theta)$	M1		Seen or used
	$\Rightarrow \left(\int_{0}^{2\pi} \frac{1}{\left(3 + 2\sin\theta\right)^{2}} \mathrm{d}\theta\right) = \frac{6\sqrt{5}}{25}\pi$	A1	4	ACF but must be exact.
	Total		9	
(a)	For the A1 accept eg $\frac{9}{5}x^2 + (y+2)^2 = \cos \frac{9}{5}x^2$	nstant and	accept of	ther equally equivalent forms
(a) (b)	Using differentiation can be applied to any s Altn	suitable fo	rm of the	Cartesian eqn of the ellipse.
	$\frac{1}{2}r^2 = \frac{1}{(3+2\sin\theta)^2}$ to a Cartesian eqn using correct (polar \rightarrow Cartesian) conversion formulae (M1)			
	$r = \frac{\sqrt{2}}{(3+2\sin\theta)}$ Cartesian eqn $9x^2 + 5$	$\left(y + \frac{2\sqrt{2}}{5}\right)$	$\left(\frac{1}{2}\right)^2 = \frac{18}{5}$	(A1)
	$a = \sqrt{\frac{2}{5}}$; $b = \sqrt{\frac{18}{25}}$; (M1 Finding sem	ni-axes wi	th at least	t one value correct; seen or used)
	(Area =) $\pi \sqrt{\frac{2}{5}} \sqrt{\frac{18}{25}};$			
	$\left(\int_{0}^{2\pi} \frac{1}{(3+2\sin\theta)^{2}} \mathrm{d}\theta\right) = \frac{6\sqrt{5}}{25}\pi$ (A1 as	in main s	cheme)	

Q6	Solution	Mark	Total	Comment
(a)		M1		Product rule used to differentiate $y \cot x$
	$\frac{du}{dt} = \frac{d^2y}{dt} + \frac{dy}{dt} \cot x = y \cos \cos^2 x$			or quotient rule used to differentiate <i>y</i> /tan <i>x</i>
	$\frac{1}{dx} = \frac{1}{dx^2} + \frac{1}{dx} \cot x = y \cos \theta dx$			2
		A1		$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{\mathrm{d}^2 y}{\mathrm{d}x} + \frac{\mathrm{d}y}{\mathrm{cot}} x - y \cos \mathrm{ec}^2 x \text{ OE}$
				$dx dx^2 dx$
	$\frac{d^2 y}{dx^2} + (\cot x + \tan x)\frac{dy}{dx} =$			
	dx dx			
	$=\frac{\mathrm{d}u}{\mathrm{d}x}+y\cos \mathrm{ec}^{2}x+\tan x(u-y\cot x)$			
	$=\frac{\mathrm{d}u}{\mathrm{d}x}+y(\cos \mathrm{ec}^2 x-1)+u\tan x$			
	$=\frac{\mathrm{d}u}{\mathrm{d}x}+y\cot^2 x+u\tan x$			
	2^{nd} order DE $\rightarrow \frac{du}{dx} + u \tan x = 0$	A1	3	AG Be convinced
(b)	$\int \frac{1}{u} (\mathrm{d}u) = \int -\tan x (\mathrm{d}x)$	M1		Separation of variables or IF= sec x
	$\ln u = \ln \cos x \ (+\ln A)$	A1		d (mass d (mass d) 0.05
				If $u = \ln \cos x$ or $\frac{1}{dx}(u \sec x) = 0$ OE
	$u = A\cos x \Rightarrow \frac{dy}{dx} + y\cot x = A\cos x$	M1		Equating c's non-zero u to $\frac{dy}{dy} + y \cot x$
	dx			dx
	$IF = e^{\int \cot x (dx)}$	MI		Р
	$= e^{\ln \sin x} = \sin x$	A1		
	$\frac{\mathrm{d}}{\mathrm{d}x}(y\sin x) = A\sin x\cos x$	dM1		
	$a_{\rm sin} r = A_{\rm sin}^2 r (+ P)$	A1		OE Correct integration of $\sin x \cos x$ eg
	$y \sin x = \frac{1}{2} \sin x (+B)$			$0.5\sin^2 x$ or $-0.5\cos^2 x$ or
				$-0.25\cos 2x$
	When $x = \frac{\pi}{6}$, $y = 0$, $\frac{dy}{dx} = \sqrt{3}$, $u = \sqrt{3}$			
	A = 2 $B = -0.25$	A1		Correct value for one of the constants of
	II – 2, B 0.20			integration. Dep only on 1^{st} M1 as could be found from $u = A \cos x$
	1			
	$y = \sin x - \frac{1}{4\sin x}$	A1	9	Correct expression for <i>y</i> in terms of $\sin x$
	Total		12	

Q7	Solution	Mark	Total	Comment
(a)	$Aux eqn m^2 + 4m + 4 = 0$	M1		Factorising or using quadratic formula OE
	$(m+2)^2 = 0$	MI		on correct aux eqn. PI by correct value of 'm' seen/used.
	$(y_{CF} =) (Ax + B) e^{-2x}$	A1		
	Try $(y_{PI} =) a \sin 2x + b \cos 2x$	M1		Correct form for y_{PI} used. If other term(s) included, candidate needs to show the
	$(y'_{PI} =) 2a \cos 2x - 2b \sin 2x;$ $(y''_{PI} =) -4a \sin 2x - 4b \cos 2x$			corresponding coefficient is 0
				Correct substitution into DE don on
	$-4d\sin 2x - 4b\cos 2x$			previous M only. PI by correct <i>a</i> and <i>b</i>
	$+4(2a\cos 2x - 2b\sin 2x) +$	dM1		seen or used.
	$4(a \sin 2x + b \cos 2x) = 4 \sin 2x + 8 \cos 2x$			Finding correct coefficients for particular
	$-8b = 4; 8a = 8 \implies a = 1, b = -\frac{1}{2}$	A1		integral. PI by next line
	$(y_{GS} =) (Ax + B) e^{-2x} + \sin 2x - \frac{1}{2} \cos 2x$	A1	6	Correct GS with two arbitrary constants.
(b)	When $x = 0$, $y = \frac{1}{2}$, $\frac{dy}{dx} = 0$ $f(0) = B - 0.5 = 0.5 \Longrightarrow B = 1$	M1		f(0) = 0.5 OE used with c's GS as far as finding a value for one of the arbitrary constants.
	$f'(0) = A - 2B + 2 = 0 \Longrightarrow A = 0$	M1		f'(0) = 0 OE used with c's GS as far as finding a value for the remaining arbitrary constant.
	$(y=f(x)=) e^{-2x} + \sin 2x - \frac{1}{2}\cos 2x$	A1		$e^{-2x} + \sin 2x - \frac{1}{2}\cos 2x$ OE PI by the next line
	$(f\left(\frac{\pi}{6}\right) =) e^{-\frac{\pi}{3}} + \frac{\sqrt{3}}{2} - \frac{1}{4}$	A1	4	ACF but must be exact with no trig fns
(1)	Total		10	
(b)	Altn for the two M1 marks : Relevant expansion equated; relevant equations are $B - 0.5 = 0.5$, be found as in main scheme.	ons of e^{-2x} A-2B	$\sin 2x + 2 = 0$, $\cos 2x$ used and coefficients of x^0 or x and a value for the arbitrary constant must
(b)	f''(0) = 6 used as far as finding a value for an a	urbitrary c	onstant is	an OE for M1; $[-4A+4B+2=6]$

Q8	Solution	Mark	Total	Comment		
(a)	$r \sec^2 \theta = 4$; $(r-1)^2 = \tan^2 \theta$			Eliminating θ to reach a cubic equation in		
	$r\{1+(r-1)^2\}=4$	M1		r, or eliminating r to reach a cubic		
	3 2 2 2 4 2	A 1		equation in $\tan \theta$ or $\cos^2 \theta$ or $\sin^2 \theta$.		
	$r^{3} - 2r^{2} + 2r - 4 = 0$	AI		Correct cubic in r or $\tan \theta$ or $\cos^2 \theta$ or $\sin^2 \theta = \tan^3 \theta + \tan^2 \theta + \tan^2 \theta$		
				Sin θ eg tan θ + tan θ + tan θ - 5 = 0 PI by factorised form		
	$(r-2)(r^2+2)=0$	A1		Correct factorisation of correct cubic.		
				eg $(\tan \theta - 1)(\tan^2 \theta + 2\tan \theta + 3) = 0$		
	2			or stating the roots exactly or to at least 2sf		
	$r^2 + 2 \neq 0$ so (only value of) r is 2	E 1		Showing that cubic equation in r or $\tan \theta$		
				or $\cos \theta$ or $\sin \theta$ has only one relevant root, as $\tan^2 \theta + 2 \tan \theta + 3 = 0$.		
				has no real root $(2^2 - 4(3) < 0)$ so		
				π		
				$\tan \theta = 1 \Longrightarrow \theta = \frac{\pi}{4}$ only (allow 3sf dec)		
	When $r = 2$, only value of θ is $\frac{\pi}{2}$ so			Showing that there is only one point of		
				intersection which is at a distance 2 from		
	single point of intersection $\left(P\left(2,\frac{\pi}{4}\right)\right)$	E 1	_	the pole. Values must be exact and		
	$\begin{pmatrix} 4 \end{pmatrix}$		5	previous 4 marks must have been scored		
	with $OF = 2$.					
(b)	$A(1,0)$ (or $r = 1, \theta = 0$)	B1		May be indicated on the diagram.		
				PI by use of both $OA = 1$ and limit 0.		
				$\theta = 0$		
	Area $\Delta OAP = \frac{1}{2}(OA)2\sin(\theta)$	2.64		$\frac{1}{2}(OA)2\sin(\theta)$ OF		
	$\frac{1}{2} \frac{1}{2} \frac{1}$	MI		$2^{(OII)23III(O_p)}OL$		
	Area $\triangle OAP = \frac{1}{\sqrt{2}}$	A1		OEmust be in an exact form.		
	$\sqrt{2}$ (Area bounded by <i>OP</i> , arc <i>AP</i> and <i>OA</i>)					
	$\frac{1}{1} \int_{0}^{(\frac{\pi}{4})} (1 + 4\pi c)^{2} (1 c)$	M1		Use of $k \int r^2 (d\theta)$, $k > 0$		
	$=\frac{1}{2}\int_{(0)}^{1}(1+\tan\theta)(d\theta)$					
	$=\frac{1}{4}\int_{-\pi}^{\pi}(1+\tan^2\theta+2\tan\theta)(d\theta)$	R1		Correct expansion correct limits and		
	$2 J_0 (1 + tail + 0 + 2 tail +) (1 +)$	DI		k=0.5		
	$-\frac{1}{2} [\tan \theta + 2 \ln \sec \theta]^{\pi/4}$	М1				
	2 1 1 1 1 1 1 1 1 1 1	IVII		Correct integration of $\tan^2 \theta$		
	$=\frac{1}{2}(1+2\ln\sqrt{2})$	Δ1		OF must be in an exact form		
	(Required area) = $\frac{1}{2}(1+\ln 2) - \frac{1}{\sqrt{2}}$	A1	8	OEmust be in an exact form.		
	Total		13			
(a)	$eg \ 16\cos^{\circ}\theta - 8\cos^{4}\theta + 2\cos^{2}\theta - 1 = 0$	(A1); eg	$(\cos^2 \theta -$	$-0.5)(16\cos^4\theta + 2) = 0 (A1);$		
	eg $16\sin^6\theta - 40\sin^4\theta + 34\sin^2\theta - 9 = 0$ (A1); eg $(2\sin^2\theta - 1)(8\sin^4\theta - 16\sin^2\theta + 9) = 0$ (A1);					

09	Solution	Mark	Total	Comment
(a)		M1	Iotai	Expansions for each attempted with at
X-7	$\ln(1+y) = y - \frac{y}{2} + \frac{y}{2} - \frac{y}{4} + \frac{y}{5} \dots$			least one expansion correct up to v^5 term
				or at least two of the three terms in the
	$\ln(1-y) = -y - \frac{y^2}{y^2} - \frac{y^3}{y^3} - \frac{y^4}{y^4} - \frac{y^3}{y^5}$			next line.
	m(1 y) = y 2 3 4 5			
(b)	$\ln(1+y) - \ln(1-y) = 2y + \frac{2}{3}y^{3} + \frac{2}{5}y^{5}$ (valid for) $-1 < y < 1$ $\ln\left(\frac{1-x+x^{2}}{1+x+x^{2}}\right) = \ln(1-x+x^{2}) - \ln(1+x+x^{2})$	A1 B1 M1	3	or $ y < 1$. $\ln\left(\frac{A}{B}\right) = \ln A - \ln B$ used at any stage
		B1		$1 - x^3 = (1 - x)(1 + x + x^2)$ seen or used
	$= \ln(1 + x^{3}) - \ln(1 - x^{3}) - [\ln(1 + x) - \ln(1 - x)]$	A1		Seen in grouped form or used with (a)
	$= 2x^{3} + \frac{2}{3}x^{9} + \frac{2}{5}x^{15} + \dots$ $-2\left[\dots + \frac{x^{3}}{3} + \dots + \frac{x^{9}}{9} + \dots + \frac{x^{15}}{15} + \dots\right]$	dM1 A2,1,0		c's (a) used for y as x and x^3 A2At least 5 of these 6 terms seen/used A1At least 4 of these 6 terms seen/used [Combined terms would lead to $\frac{4}{3}x^3 + \frac{4}{3}x^9 + \frac{4}{3}x^{15}$]
	$a = a^{r-3}$			3 9 15
	Coefficient of x^2 :			
	$\frac{2}{2r-1} - \frac{2}{6r-3} = \frac{4}{6r-3}$	A1	7	Dep on previous 6 marks scored.
	2r - 1 0r - 3 0r - 3			Either $\frac{4}{6r-3}$ or $\frac{4}{3(2r-1)}$
	Total		10	
	TOTAL		75	
(a)	If eg x is used instead of y in answer(s), then	n maximu	n penalty	is 1 mark
(b)	Candidate who uses expns of $ln(1+X)$ for bo	oth X= $(x+$	x ²) and X	$=(-x+x^2)$ must go as far as $X^{1/2}$